
Magecart Analysis
written by Mert SARICA | 4 April 2020
As you may remember, in my blog post “Fighting Against Magecart” I mentioned
that I would cover the analysis of malicious JavaScript code in another
article. Until now, I have analyzed malicious JavaScript code many times, and
about 3 years ago, I also wrote a blog post titled “Malicious JavaScript
Analysis“. Of course, as years passed, the methods used by threat actors
changed and the work of cybersecurity analysts and researchers became
increasingly more difficult.

When I first came across the malicious JavaScript code
(6cb1e31ff2f343a9d576d889bfcbde0e.js) developed by the Magecart group, I
immediately noticed that the code had been made too complex to easily
understand, it was likely that one of the JavaScript Obfuscator or JavaScript
Obfuscator Tool tools had been used. I thought that I could easily overcome
this complexity by using tools like de4js and IlluminateJs and at worst, I
could reach a happy ending by doing dynamic code analysis (debugging). But
things didn’t turn out as planned. :)

First, I used the JavaScript Beautifier website to make the malicious code
block readable. Then, I tried to use the de4js and IlluminateJs tools in
succession to make the code more understandable, but I failed. I started

https://www.hack4career.com/magecart-analysis/
https://www.mertsarica.com/fight-against-magecart/
https://www.mertsarica.com/zararli-javascript-analizi/
https://www.mertsarica.com/zararli-javascript-analizi/
https://javascriptobfuscator.com/
https://obfuscator.io/
https://obfuscator.io/
https://lelinhtinh.github.io/de4js/
https://illuminatejs.com/
https://beautifier.io/
https://lelinhtinh.github.io/de4js/
https://illuminatejs.com/


analyzing the malicious JavaScript code with the Chrome DevTools by doing
debugging and soon realized that things were not going well. I thought that
the problem might be caused by Chrome and decided to try my luck with
Firefox, but it also gave a warning that something was not right.

As I was thinking about what to do, I started researching the possibility of
debugging with a different tool instead of a web browser and came across the
Visual Studio Code source code editor. When I started debugging with this
editor, which allows for the analysis of HTML and JavaScript code in the

https://developers.google.com/web/tools/chrome-devtools/
https://code.visualstudio.com/


background through the Chrome debugging extension and has many plugins, I saw
that the function associated with SetCookie was creating many arrays,
consuming the available space in memory, and making the debugging ineffective
(self-defending).



I assumed that because malicious actors intended for this code to work
seamlessly in the web browser, there were controls in the code for debugging,
and began analyzing each function step by step. My ultimate goal was not to
analyze the code dynamically from beginning to end, but to find out which
website the stolen information was sent to and to decode the hidden character
strings. So, I progressed by starting from the _0x3a74 function used to
decode the hidden strings.



While analyzing, I noticed that a check for a space between the { sign and
the return keyword was being made with Regex in the removeCookie value. When
a space character was detected, the code flow would proceed to the function
that was causing problems by creating many arrays, as mentioned above. So why
did the malicious developer put such a control? When analysts encounter such
complex, unreadable codes, the first thing they do is to use tools (like
JavaScript Beautifier) to make the code readable and properly formatted,
these tools automatically insert spaces and this creates a great detection
mechanism for the malicious actors that code is being analyzed.

https://en.wikipedia.org/wiki/Regular_expression






I have detected that credit card information (CVV, Holder, ccexpiry,
ccnumber, cvc, fullname) is being stolen and sent to the address
https://kinitrofitness[.]com/wp-includes/class-wp-customize-settings.php by
editing it without spaces and solving hidden character strings through Regex
control and static and dynamic code analysis.

https://en.wikipedia.org/wiki/Regular_expression


Hope to see you in the following articles.

Note:

This article also contains the solution for the Pi Hediyem Var #191.
cybersecurity game.

https://www.mertsarica.com/pi-hediyem-var-19/

