
Java Decompilers
written by Mert SARICA | 1 March 2016
I agree that working at byte code level is sometimes a bit challenging. If
the mission is analyzing a Java malware, decompiling the class files into
Java source code is the first step most analysts would take. However, like I
mentioned in my post on July (Java Byte Code Debugging), if you are up
against a malware that takes advantage of an obfuscator tool (like Allatori)
Java decompilers (like JD) can most of the time let you fail.

Around December, a Java malware called siparisler.rar (siparisler.jar) took
my attention which downloads additional payload from a website that I think
was hacked with different password each time.

https://www.hack4career.com/java-decompilers/
https://www.mertsarica.com/java-bayt-kod-hata-ayiklamasi/
http://www.allatori.com
http://jd.benow.ca/


When I looked at the class files inside the JAR package that was made with
the help of Allatori obfuscator tools’ strongest features (long class and
method names, reserved names like AUX e.t.c), I saw that file names were
approximately 8000 digits long.

Because of the long file names, when I tried to extract the malware to the
operating system with the use of tools like Winrar, 7zip, Unzip I realized
that I got stuck at operating system limits and was not able to open the
files. Also because of the long file and method names I noticed that most
decompilers (except CFR) got an error during the decompilation process.



As a person who witnessed that this malicious file was crashing a commercial
product that does sandbox analysis while it is analyzing, I can state again
that corporations whom only invest in and rely upon devices are on a thin
ice.

Of course, with Python a simple tool like Allatori Zip Shortener, making this
zip file openable was easy enough.

https://www.mertsarica.com/codes/allatori_zip_shortener.py


To gain a more detailed information, I could have continued with a byte code
level analysis, like in the article that I posted on July. If my purpose was
to only find the type of this malware, I could have learned that it is a
Jsocket RAT software by doing a quick search on the memory file without any
trouble.

While I was analyzing this malware, I realized that most decompilers were not
enough against Allatori thanks to a website

https://jsocket.org


(http://www.javadecompilers.com/).Most decompilers were either unsuccessful
to decompile this malware into a source code or the source code they
decompiled was in a condition that could not be reorganized. If I wanted to
move on with a byte code level static analysis, I could have seen that
Allatori is hiding the strings and to be able to solve it I would have needed
to find the method of hiding which would have made my work longer at byte
code level. Because of this, I decided to evaluate existing decompilers
against Allatori and try to find out which decompiler can reveal the
algorithm that was used for hiding those strings. The criterion for success
was that the class file which got decompiled to source code was reorganizable
and executable.

First of all, in Java I wrote a simple code which prints “Hello World” to the
command line and compiled it into a JAR package. Then with the Allatori, I
create an obfuscated HelloWorld package. Finally, I started to decompile all
the JAR files into the source code and then compile and run them by using
this site http://www.javadecompilers.com/

http://www.javadecompilers.com
http://www.javadecompilers.com/




As a result of the evaluation I found out that JadX and Procyon decompilers
were able to successfully decompile the codes that were hidden by Allatori
v5.6 Demo version to their original form.

https://github.com/skylot/jadx
https://bitbucket.org/mstrobel/procyon






With the help of Procyon and JadX, the string obfuscation algorithm that is
used by Allatori v5.6 came to light :)



Hope to see you on the next post, have a secure day.

Original Article: Java Kaynak Kodu Dönüştücüleri
Translated to English by: Hüseyin Fatih Akar | Twitter: @thehakar)

https://www.mertsarica.com/java-kaynak-kodu-donustuculeri/
mailto:hakar1@binghamton.edu
http://www.twitter.com/thehakar

