
Excel 4.0 Macro (XLM)
Analysis
written by Mert SARICA | 1 June 2021
The DDE-based phishing attacks that started in 2017 have been replaced by
Microsoft Excel 4.0 Macro (XLM) phishing attacks as of 2020. A little
research would show that XLM macros have been introduced to the world since
1992, with the release of Microsoft Excel 4.0. VBA macros, which are
frequently misused by threat actors, were first introduced with Excel 5.0 and
are still supported in the latest version of Microsoft Office.

If my memory serves me correctly, the first technical article I read about
XLM macros was this blog post from Outflank. As research on XLM macros
started to reveal their existence, it began to attract attention not only
from offensive security experts but also from threat actors. Soon enough,
organizations began to experience phishing attacks that contained XLM macros.
Due to the difficulty of detecting and analyzing XLM macros as compared to
VBA macros, it is not an easy task.

The difficulty in analyzing an Office file containing XLM macros, as I stated
in my blog post titled “Microsoft Office Macro Analysis“, is caused by the
fact that they cannot be easily viewed from the Microsoft Office interface.
As a result, the possibility of malicious XLM macro-containing Office files
going unnoticed by inexperienced cybersecurity professionals (such as “This
Office file is corrupted” or “Does not contain macros”) increases. In order
to show cybersecurity analysts how XLM macro-containing Microsoft Office
files can be analyzed and to raise awareness about XLM macro-containing
Microsoft Office files, I decided to write a blog post based on a real-life
incident.

In May 2020, alarms began to be generated for many SMTP IP addresses from
which hundreds of emails with sender addresses ending in @wp.pl were sent and
blocked by security systems. Upon inspection, the emails had attachments with
XLS extension, Excel files that have been randomly named. In such cases, one
of the most important steps for cybersecurity analysts to take is to identify
the addresses of the command and control centers in the malicious document,
search for them in web traffic records, and block access throughout the
organization.

https://www.hack4career.com/excel-4-0-macro-xlm-analysis/
https://www.hack4career.com/excel-4-0-macro-xlm-analysis/
https://blog.malwarebytes.com/threat-analysis/2017/10/old-ms-office-feature-weaponized-in-malspam-attacks/
https://en.wikipedia.org/wiki/Microsoft_Excel#Excel_4.0_(1992)
https://en.wikipedia.org/wiki/Microsoft_Excel#Excel_5.0_(1993)
https://outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/
https://www.mertsarica.com/microsoft-office-makro-analizi/


Of course, when the issue at hand is an Office file containing XLM macros,
it’s possible that static and dynamic analysis performed by sandbox systems
may be insufficient in the face of anti-sandbox techniques (e.g. Sandbox
Detection). If the malicious Excel file in question is designed to detect
when it is running in a sandbox, then the address of the command and control
center will not be revealed during these analyses (VirusTotal, Hybrid-
Analysis). In this case, the cybersecurity analyst’s job should be to take
the malicious Excel file, copy it to a virtual system created for the purpose
of malware analysis, and analyze it there.

When running the Excel file in a virtual system, we are presented with two
pages (Sheet1 and Sheet2). The first page contains a fake image/message
indicating that we need to activate the macro to achieve its malicious
intent, while the second page shows empty cells (which are not actually
empty). Although Excel may warn us that there is a macro in the file, when we
view the macro, it appears to be empty.
This kind of macro-based attack often called “Fileless attack” or “Living-
off-the-land attack” because it doesn’t involve in injecting code into the
system or download any malicious file. Instead, it makes use of the system’s
legitimate tools in order to perform its malicious action, thus it’s harder
to detect.

https://www.mertsarica.com/sandbox-detection/
https://www.mertsarica.com/sandbox-detection/
https://www.virustotal.com/gui/file/d7aff893ee5ac59d40eaa8e7acc6886086bcde1c1f3a714c1b3bd99ac1c26bef/detection/f-d7aff893ee5ac59d40eaa8e7acc6886086bcde1c1f3a714c1b3bd99ac1c26bef-1589636429
https://www.hybrid-analysis.com/sample/c272b18521a72d8e1a6cf01b1e83d3b04a3be2b34af5b488b63c08c7090ccfbe/5ebfec393c48922c00604ae8
https://www.hybrid-analysis.com/sample/c272b18521a72d8e1a6cf01b1e83d3b04a3be2b34af5b488b63c08c7090ccfbe/5ebfec393c48922c00604ae8
https://www.virustotal.com/gui/file/d7aff893ee5ac59d40eaa8e7acc6886086bcde1c1f3a714c1b3bd99ac1c26bef/detection


When opening the file with any hex editor and looking at the character
strings contained within, we can see that, as suspected from the Excel 4.0
Macros series, it contains XLM macros. To be sure that the file contains a
macro, when we analyzed the file with the mraptor tool, we could see that the
file had a cell named Auto_Open, which was capable of running automatically,
similar to the AutoOpen() function in a VBA macro. To learn the name of the
cell and view and analyze it, I used Didier STEVENS‘ oledump tool. And by
using (oledump.py -p plugin_biff.py –pluginoptions “-o LABEL -s”
C:\Users\Mert\Desktop\ea74b9a274c0c73cad990ddd089927b6.xls) I found that the
cell that was first run was named Auto_OpencfitK. This is a clever technique
used by the malware developer to evade detection. Knowing that an analyst
would use Go To (CTRL-G) in Excel to go to the cell named Auto_Open to start
the analysis, the developer changed the name of the cell to Auto_OpencfitK

https://github.com/decalage2/oletools/wiki/mraptor
https://www.linkedin.com/in/didierstevens/
https://blog.didierstevens.com/programs/oledump-py/




After we found out that the initial cell was an obfuscated macro consisting
of 42 FORMULA statements and CHAR functions throughout the file, analyzing
and solving each one of them one by one would have taken a significant amount
of time. So I decided to proceed with debugging. By going to the
Auto_OpencfitK cell and pressing ALT + F8, I then pressed the Step Into
button, and Excel prompted me to allow the macro to run and then close and
re-open the file. As soon as the file was opened, Excel quickly moved to the
Auto_OpencfitK cell. To avoid missing this step, I changed the formula
=SET.VALUE(FG22029, -490-GET.CELL(17,HX17320)) in that cell to =HALT() and
this caused the macro to end. After this, I changed the =HALT() formula to
=SET.VALUE(FG22029, -490-GET.CELL(17,HX17320)) and then by pressing the ALT +
F8 on the cell, I was able to dynamically analyze the macro from the initial
cell without any issues.



As I continued analyzing by using Step Into and Evaluate buttons, and
decoding the hidden cells, I saw that the macro uses various controls against
debugging and sandbox environments by using Excel 4.0 Macro Functions
Reference document. When I reached the AT41104 cell, which is performing the
debugging control, to bypass this control, I copied the =GOTO(AY23948) value
in the next cell where it would continue if debugging is not detected.

=IF(GET.WORKSPACE(31),GOTO(HV23758),) Is the macro in debugging mode? (Anti-
debugging)
=IF(GET.WORKSPACE(19),,GOTO(HV23758),) Is a mouse present on the system?
(Anti-sandbox)
=IF(GET.WORKSPACE(42),,GOTO(HV23758),) Can the system play sound? (Anti-
sandbox)

These statements or functions checks whether macro is running in a sandbox
environment or on a real machine or if it’s in debugging mode.It also try to
detect other anti-sandbox evasions like Mouse or sound. These checks used by
malware developer to avoid detection, and prevent the macro from running when
it’s running in an environment that the attacker doesn’t want it to run in.

https://d13ot9o61jdzpp.cloudfront.net/files/Excel%204.0%20Macro%20Functions%20Reference.pdf
https://d13ot9o61jdzpp.cloudfront.net/files/Excel%204.0%20Macro%20Functions%20Reference.pdf








As I continued debugging, I noticed that the macro attempts to connect to
https://docs.microsoft.com/en-us/officeupdates/office-msi-non-security-update
s to check for internet connection and stops running if it encounters an
error. I also observed that macro checks for permission for macro usage via
registry, After that it try to contact with
https://dehabadi[.]ir/wp-keys[.]php and
https://eleventalents[.]com/wp-keys[.]php. Although these addresses were not
active during my analysis, my research led me to suspect that these addresses
are command and control servers associated with the Zloader malware. Even
though I couldn’t continue my analysis, my aim was reached successfully by
revealing these addresses.

https://twitter.com/hashtag/zloader
https://malpedia.caad.fkie.fraunhofer.de/details/win.zloader


With this explanation you have a basic understanding of the subject matter,
now you can use a tool such as XLMMacroDeobfuscator to quickly solve the
hidden XLM macro and save time. With this article I hope to provide insight
for analysts who want to analyze XLM macros.

Hope to see you in the following articles.

https://github.com/DissectMalware/XLMMacroDeobfuscator




Note: For those looking for more resources on XLM macro analysis, I recommend
looking at these articles (#1, #2, #3, #4, #5) as well. These articles will
give more information about the analysis of XLM macros and methods that you
can use.

https://inquest.net/blog/2019/01/29/Carving-Sneaky-XLM-Files
https://inquest.net/blog/2020/03/18/Getting-Sneakier-Hidden-Sheets-Data-Connections-and-XLM-Macros
https://inquest.net/blog/2020/05/06/ZLoader-4.0-Macrosheets-
https://clickallthethings.wordpress.com/2020/05/13/zloader-and-xlm-4-0-making-evasion-great-again/
https://code.firstlook.media/reverse-engineering-obfuscated-excel-4-macro-malware

