
Cerberus Analysis
written by Mert SARICA | 1 December 2020
In February 2020, I received a SMS on my cell phone that made me quite
suspicious. When I visited the https://ko[.]tc/hediyekazani web address
mentioned in the message, I found that I was redirected to the
http://www-bedavainternethediyeuygulama[.]com web address. A short time after
receiving the SMS, when I visited the website again, I saw that the images on
the site had changed. Saying “suspicion is the whip of a cyber security
researcher,” I decided to take a closer look at this situation.

https://www.hack4career.com/cerberus-analysis/
https://www.virustotal.com/gui/url/8c74e0d22998a0a2e32622c88470090bc4183f828013273c040de3259b1197a2/detection








I downloaded the 5GBeta.apk file from the website and uploaded it to the
Koodous web application, which is used for mobile malware analysis. The
analysis failed. Then I uploaded this application to the VirusTotal web
application and, although I encountered a clue that it was a banking malware
(Cerberus), I did not see the address of the command and control center in
the behavioral analysis output. I couldn’t find answers to the questions that
came to my mind, so I decided to quickly analyze the 5GBeta.apk application
dynamically using the Genymotion Android emulator.

As soon as the malicious application was installed on Android, it began to
request permissions one by one to achieve its bad intentions. After obtaining
the permissions and successfully completing the installation, it hid its icon
and started working in the background and communicating with the command and
control center with the kryll[.]ug (8[.]208.19.185) web address. When I
searched the 8[.]208.19.185 IP address on VirusTotal, it was clear from the
passive DNS information that it was not innocent at all.

https://koodous.com/apks/4c08f84f625ba7afb75d56400ca093d5da0f890b78b8a0c4ba919b135856086e
https://www.virustotal.com/gui/file/4c08f84f625ba7afb75d56400ca093d5da0f890b78b8a0c4ba919b135856086e/detection
https://www.genymotion.com/
https://www.virustotal.com/gui/domain/kryll.ug/details
https://www.virustotal.com/gui/ip-address/8.208.19.185/relations








In my virtual Android operating system, a screen of Google Play, which was
created to steal my credit card information, appeared as there was no banking
application installed. When I entered a 16-digit credit card number created
for testing, I saw that the save button (SAVE) was not activated. When I made
the credit card field 19, the SAVE button became active. Probably the
malicious person has made the control of the 3-digit CVV2 number specific to



the form where the credit card number is entered and such an error has
occurred. After seeing that all the information I entered went to the command
and control center in encrypted form, I decided to pursue the encryption key.









Before pursuing the encryption key, I installed and ran 10 mobile apps of
different banks on my virtual system to confirm if the malicious application
had stolen any banking information. As a result of my tests, the malicious
application was able to steal all the information entered by the user by
opening a fake screen over the login screen of the targeted mobile banking
application when it was running.



In order to find the encryption key, I used the GDA tool to decompile the
5GBeta.apk application, and by looking at the AndroidManifest.xml file which
contains the basic information about the application, I saw that the classes
between the MainActivity class, which will run first when the malicious

https://github.com/charles2gan/GDA-android-reversing-Tool


application starts, and the source code were different. This indicated that
the malicious code block was loaded dynamically during runtime.

When I looked at the folder
/data/data/mcneapsbpysnarhkjjm.yjolrmlaqlpzyjfuls.gsiwerlnfzdy where the
malicious application was installed, I noticed the large files ring0.apk and
NpA.json. I learned that NpA.json was actually a DEX file, and when I
decompiled it using the jadx tool to see the source code, I encountered the
MainActivity class that was present in the AndroidManifest.xml file.



After analyzing the encrypted strings, I found that the f class is
responsible for decrypting them. To do this, it takes the first 12 characters
of the encrypted string as an RC4 key, and uses that key to decrypt the rest
of the string, which is BASE64 decoded. (For example, if the encrypted string
is
mjwpnqfxpgweNDNiYjQ2M2JiNzMxNzE3OWM5ODRjZmI1ZWFkYzYxMjY4NDE4YTY3MDVhNTZlZGZlM
GNhNmQ1ZDVlMzU2MTE5NWU5YjYyNw==, the RC4 encryption key is mjwpnqfxpgwe.
Using this key, the rest of the characters
(NDNiYjQ2M2JiNzMxNzE3OWM5ODRjZmI1ZWFkYzYxMjY4NDE4YTY3MDVhNTZlZGZlMGNhNmQ1ZDVl
MzU2MTE5NWU5YjYyNw==) are decoded by BASE64 and then decrypted by the
encryption key.) I was also able to easily decrypt all the strings by using
the Java code in the f class and compiling it with the help of
compilejava.net website.

https://www.compilejava.net/




After observing that the encrypted data sent to the command and control
center was in JSON format, I focused on the parts of the code where this
class was used. Since I knew that the malicious application sent the
sti=004&q=info_device parameter to the command and control center at certain
intervals, and then the encrypted ws= parameter, I found the code block where
these two values were concatenated. Upon analyzing this code block, I found
that the ws parameter was encrypted with the alien_ring0_wdfes RC4 key.





When it came to decrypting the encrypted data I previously obtained with the
alien_ring0_wdfes encryption key, and confirming the validity of the
encryption key, I also learned that the fake screens (html) came from the
command and control center, as mentioned at the beginning of the text.”





In conclusion, it was surprising and concerning to learn that the Cerberus
mobile banking malware, which has been frequently talked about in recent
years for its features and name, has started targeting citizens with SMS
containing their name and surname. As always, I stress that Android users
should avoid installing apps from unknown sources.

Hope to see you in the following articles.

Note:

After this security research (February 2020), it was revealed that (September1.
2020) this malware, commonly known as Cerberus, later branching off into a
malware called Alien from the fork of Cerberus v1 version.
This text also includes the solution for the Pi Hediyem Var #18 cybersecurity2.
game.

https://www.bleepingcomputer.com/news/security/cerberus-android-malware-can-bypass-2fa-unlock-devices-remotely/
https://www.threatfabric.com/blogs/alien_the_story_of_cerberus_demise.html
https://www.mertsarica.com/pi-hediyem-var-18/

